《分数除法》教学设计

时间:2025-07-05 15:59:04
《分数除法》教学设计

《分数除法》教学设计

作为一名教学工作者,时常需要用到教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计应该怎么写才好呢?以下是小编帮大家整理的《分数除法》教学设计,仅供参考,大家一起来看看吧。

《分数除法》教学设计1

教学目标:

1、通过对比两个除法算式与一个乘法算式,比较已知数和得数,理解并概括出分数除法的意义。

2、掌握分数除以整数的计算方法。

3、通过教学,培养学生的知识迁移能力和抽象、概括能力。

4、使学生明确知识间是相互联系的。

教学重难点:

重点:

理解分数除法的意义,掌握分数除以整数的计算方法。

难点:

掌握分数除以整数的计算方法。

教学过程:

一、导入

1、例1。

2、改编条件和问题,用除法计算。

二、教学实施

1、初步理解分数除法的意义。

师问:如果将一盒重八分之五千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?

学生试着列出算式。

引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?

2、归纳概括分数除法的.意义。

3、分数除以整数。

(1)例1引导学生分析并用图表示数量关系。

师问:求每份是这张纸的几分之几,怎样列式?

(2)列式计算。

师问:从图上看,结果是多少?这个结果是怎样得到的?

学生折一折,算一算。

(3)理清思路。

思路一:把五分之四平均分成2份,就是把4个五分之一平均分成2份,每份是2个五分之一,也就是五分之二。

思路二:把五分之四平均分成2份,求每份是多少,就是求五分之四的二分之一是多少。

(4)总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。

5、巩固练习。完成教材第30页“做一做”。

三、课堂作业设计

1、填空。

(1)分数除法的意义与整数除法的意义( ? ),都是已知( ? ?)与( ? ?),求( ? ? )的运算。

(2)分数除以整数(0除外),等于分数( ? ?)这个整数的( ? ?)。

2、计算并验算。

《分数除法》教学设计2

教学目标:

1、能根据分数乘法应用题的数量关系,理解、掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。

2、提高学生分析问题的能力。

3、培养学生养成良好的审题习惯。

教学重难点:

理解、掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。

教学准备:

电教媒体

教学过程:

一、教学准备

1.说下列各句中单位“1”的量及想到的数量关系式。

(1)我的身高是爸爸的

(2)小华的邮票张数比小芳多

(3)十月份的电费比九月份减少

(4)小瓶里的果汁是大瓶的

小结:单位“1”的'量×对应分率=对应量

2.请学生由(4)编题:编一道一步计算的分数乘法题。

师根据学生回答板书:一大瓶果汁有900毫升,一小瓶里的

果汁是大瓶的 ,一小瓶里果汁有多少毫升?

问:你认为编得对不对?为什么能确认?

(1)学生列式解答(口答)。

(2)为什么用900× ?

(3)小结:(板书)一大瓶果汁数量× =一小瓶果汁数量

二、新授

1.改编成例5:一小瓶里的果汁是大瓶的 ,一小瓶果汁有

600毫升,一大瓶里果汁有多少毫升?

(1)读题,比较异同:

变:条件、问题的位置变了

不变:单位“1”的量没变,数量关系式没变。

(2)怎么解答?生试做,汇报

方程:解设一大瓶x毫升

x=600

算式:600÷

x=600× =600×

x=900=900(毫升)

(1)说想法

(2)怎么检验?

900× =600(毫升) 或600÷900=

(3)再次比较二题的异同

小结解题步骤:

①找单位“1”的量,想数量关系式

②看问题

③列式解答

④检验

2.按照解题步骤完成“试一试”

①读题

②说单位“1”的量及数量关系式

③解答

④汇报

3.按步骤解答练习十二第1题

4.总结、揭题:

(1)总结:求单位“1”的量是多少,可以列方程解答,也可以用对应量÷对应分率=单位“1”的量

(2)揭题:这就是今天学习的“分数除法的实际问题”(板书)

三、练习

1.完成练习十二第3题

小结:为什么都用除法计算?(都是求单位“1”的量。)

2.课作:练一练、练习十二第2题

练习十二第2题改乘法题

3.看关键句,分别编一道乘法题,一道除法题

“黑兔只数是白兔的3/5。”

《分数除法》教学设计3

教材分析:

教材中呈现了两个问题,经过比较我们不难发现,这两个问题的共同点是都把分,第(1)题是平均分成2份,第(2)题是平均分3份,第(1)题的算式是除数的分子是能被除数整除的,而第(2)题的算式是4平均74 ÷2,被74 ÷3,被除数的分子是不能被37整除的。无论哪种方法,目的只有一个,就是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的计算方法。

学情分析:

这部分内容在学习,是在学生学习了分数乘法和认识了倒数在基础上进行的。学生之前掌握了分数乘分数的计算方法,为本单元在新知识起到了良好在铺垫作用。学生对倒数在认识,为分数除法中“除以一个数(0除外)等于乘这个数在倒数”的应用打下了基础。

教学方法:

学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的计算方法。

教学内容:

教科书第 ……此处隐藏13996个字……

五、教法要素:

1.已有的知识和经验:除法的意义和分数的产生、意义。

2.原型:

(1)把6块月饼平均分给3个小朋友,每人分几块?

(2)把1块月饼平均分给3个小朋友,每人分几块?

(3)把3块月饼平均分给4个小朋友,每人分几块?

3.探究的.问题:

(1)整数除法得不到整数商的情况时,可以用什么数表示?

(2)在表示整数除法的商时,用谁作分母?用谁做分子?

(3)分数与除法的关系是怎样的?

六、教学过程:

(一)唤起与生成

1.提出问题:

(1)把6块月饼平均分给3个小朋友,每人分几块?怎样列式计算?学生回答,教师板书:6÷3=2(块)

(2)如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计

1算?学生回答,教师板书:1÷3= (块) 3

并让学生说一说是怎样得到的?(学生表述,师用纸片演示)

(3)观察以上两个算式,两个数相除商有什么不同?

2.引入:今天我们就来研究分数与除法的关系。(板书课题)

(二)探究与解决

探究一:体会分数与除法的关系

出示例2主题图,让学生理解题意,并引导学生列出算式:3÷4。

1.提出问题:你们知道每人分得多少块吗?

引导学生独立思考。

2.合作探究

学生操作:拿出3张同样大小的圆片把它看作3块月饼,用剪刀把它们分一分。

教师巡视,参与指导。

3.交流汇报

交流时,让学生具体说一说是怎样分得;把谁看作单位“1”;把3块月饼平均分成4份,每份是多少。

教师根据学生汇报总结不同的分法。

分法一:先把每个圆剪成4个 块,再把12个 块平均分给4人,得到每人3个 块,然后把3个 块拼在一起,得出结果,每人分到 块。

分法二:按照课本上的方法,把3个圆摞在一起,平均分成4份剪开,再把每份的3个 块拼在一起,得到每人 块。

分法三:先把2个圆摞在一起,平均分成4份剪开,剪成4 块,再把1个圆平均分成4份剪开,然后把和 块拼在一起,块。

分法四:操作与推理结合:1块月饼平均分给4人,每人分得 块,块月饼平均分给4人,每人分得3个 块,是 块。

4.补充事例,举一反三

(1)把2块月饼平均分给3个人,每人分几块?

(2)把5块月饼平均分给8个人,每人分几块?

学生口答,并说说是怎样分的?(教师板书)

探究二:概括分数与除法的关系

1.引导学生观察以上几个算式,想一想:

(1)整数除法得不到整数商的时侯,可以用什么数表示商?

(2)在表示整数除法的商时,用谁作分母?用谁做分子?

(3)分数与除法的关系是怎样的?

2.组织学生小组讨论交流,全班汇报。

3.教师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)

提问:这个关系式里每个数的范围要注意什么?

学生思考并同桌交流。

指出:因为在除法里除数不能是零,所以分数的分母也不能是零。

如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示? 板书:a÷b=a/b(b≠0)

4. 想一想:分数与除法有区别吗?区别在哪里?

引导学生独立思考,再小组交流。

教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

5.引导学生说一说 表示的两种意义。

(三)训练与应用

1.教科书66页“做一做”的第1题。

2.教科书练习十二第1题。

3(四)小结与提高

总结本节课的小结收获:重点说说分数与除法的关系;评价学习表现。

《分数除法》教学设计15

板书设计(需要一直留在黑板上主板书)

分数除法

例1:每盒水果糖重100g,那么3盒有多重?

100×3=300(g)

3盒水果糖重300g,那么每盒有多重?

300÷3=100(g)

300g水果糖,每盒重100g,可以装几盒?

300÷ 100=3(盒)

归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

例2 :把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

4/5÷2

方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

4/5÷2=4÷2/5=2/5

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

4/5÷2=4/5×1/2=2/5

归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数( 结果最简。除号要变成乘号)

学生学习活动评价设计

通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的几分之几是多少求这个数的实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的`实际问题打好基础。

教学反思

本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。

主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。

《《分数除法》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式