《分数的基本性质》教学设计

时间:2025-08-10 11:35:08
《分数的基本性质》教学设计

《分数的基本性质》教学设计

作为一位杰出的教职工,时常需要用到教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。我们应该怎么写教学设计呢?以下是小编为大家整理的《分数的基本性质》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《分数的基本性质》教学设计1

【教学内容】:

【教学目标】:

1、使学生理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

2、通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。

3、在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣,提高学生发现问题的能力。

【教学重点】:经历质疑、猜想、验证、观察、归纳的学习过程,探究分数的基本性质。

【教学难点】:理解和掌握分数的基本性质。

【教学方法】:

本节课我综合采用了谈话法,情境创设法、引导探究法、直观演示法,组织学生经历观察,猜测,得出结论。

【学法指导】:

为了有效的达成上述教学目标,秉着新课程标准的精神指导,在整个教学活动中力求充分体现学数学就是做数学,数学教学就是数学活动的'教学的理念,以学生为主体,以学生发展为本。在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法。引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。

【教学准备】:

1、媒体准备:白板

2、资源准备:PPT

【资源运用】:

1、导入——课件出示问题-——唤醒旧知

2、探究新知——PPT课件——突破重点、分解难点

3、拓展延伸

【教学过程】:

一、联系旧知,质疑引思。

1、在自然数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的自然数吗?

2、在小数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的小数吗?

3、在分数的范围内,可以找到两个大小相等但分子和分母又都不相同的分数吗?

谁能说一个与《分数的基本性质》教学设计石泉县城关第二小学贾从先相等的分数?你怎么知道它们相等呢?如果让你证明他们确实和《分数的基本性质》教学设计石泉县城关第二小学贾从先相等,你准备怎么证明?

【唤醒学生已有知识经验而且引发学生的数学思考,为主动探究新知积聚动力。】

二、自主操作,验证猜想

1、初步验证

(1)提出问题

谁能说一个与《分数的基本性质》教学设计石泉县城关第二小学贾从先相等的分数?你怎么知道它们相等呢?

如果让你证明他们确实和《分数的基本性质》教学设计石泉县城关第二小学贾从先相等,你准备怎么证明?

(2)汇报方法

2、深入验证:

(1)在纸上写上一组你认为可能相等的分数;

(2)用你喜欢的方法来证明。

(3)学生操作。

(4)汇报交流。

3、概括性质,深化理解

(1)在操作的过程中,你有什么发现?分子分母怎样变化分数的大小才不变?

(2)归纳概括,总结规律,揭示课题。

(3)根据我们以前学过的分数与除法的关系,以及整数除法中商不变的性质,来说明分数的基本性质吗?

4、运用规律,完成例2。

(1)理解题意

(2)要把他们化成分母是12而大小不变的分数,分子应该怎么变化?变化的根据是什么?

(3)独立完成,交流汇报

【给学生提供开放的探究空间,满足学生的探索欲望。】

三、知识应用,巩固提升

1、判断

(1)分数的分子、分母同时乘以或除以一个数,分数的大小不变。

(2)两个分数的分子、分母都不相同,这两个分数一定不相等。

(3)《分数的基本性质》教学设计石泉县城关第二小学贾从先的分子乘以3,分母除以3,分数的大小不变。

2、五年级有《分数的基本性质》教学设计石泉县城关第二小学贾从先的学生参加象棋活动,有《分数的基本性质》教学设计石泉县城关第二小学贾从先的学生参加象棋活动,有《分数的基本性质》教学设计石泉县城关第二小学贾从先的学生参加手工活动,参加哪个小组的人数多?

3、把《分数的基本性质》教学设计石泉县城关第二小学贾从先的分子加上10,分母怎样变化,

才能使分数的大小不变?

四、回顾总结,完善认知

通过本节课的学习,你有什么收获?

【教学反思】:

1、课前准备不足,我用的20xx版做的,结果上课电脑是xxxx年版本的,展台没有试,影响教学流程。

2、教学机智不足,没有关注学情,总想到20分钟的课,时间短,有些赶,知识落实不够扎实。

3、课堂提问语言不够准确精炼,课堂评价不够丰富、准确。例如开课语及结束语言有歧义。

《分数的基本性质》教学设计2

一、教材分析:

本节课是在学生学习了分数与除法的关系的基础上来学习的,学生了解了分子相当于被除数,分母相当于除数。通过观察分子、分母的变化而分数值没变这样一个不完全归纳从而发现分数的基本性质。同时学生已经学过商不变规律再联系到分数与除法的关系也可以类推出分数的基本性质,分数的基本性质和商不变规律是一致的。学生需通过观察--探索--并抽象概括出分数的基本性质这就要求学生有较高的抽象概括能力。但这一要求对学困生来说就有点高了,所以在教学中应该两种情况都要考虑到。

二、教学目标:

1、理解分数的基本性质。(学生总结出分数的基本性质后通过抓关键词语并让学生对这些词语进行解释,同时还通过举反例来加深印象,在此基础上我还出示了几道判断题来加深对分数基本性质的理解)。

2、初步掌握分数基本性质的应用。(主要活动是利用分数的基本性质把一个分数化成分母不同而大小相等的分数,后面闯关的前三关都是分数基本性质的的运用。)

3、培养学生观察-探索- 抽象-概括的能力。(先让学生猜1/2、2/4、3/6的大小并动手涂色观察涂色部分是相等的于是得出1/2=2/4=3/6然后让学生观察这几个分数的分子、分母是如何变化的并试着用笔算算探索出其中的变化规律,并在老师的引导下抽象概括出分数的基本性质。)

4、渗透事物是发展变化的,感知变与不变的辨证关系。(沟通商不变规律与分数的 ……此处隐藏23405个字……改变了,什么却没有变?师贴板帖分数可真与众不同呵!

2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:

(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。

(2)思考:在写分数的过程中你们发现了什么规律?

组内商量一下然后开始行动!

3、小组研究教师巡视

4、全班汇报

交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图

板书课题:分数的基本性质打出幻灯

5、反思规律看书对照找出关键词要求重读共同读

6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。

三、自学例题运用规律

过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始

生自学

集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。

四、多层练习巩固深化

1、判断对错并说明理由

2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数

思考:分数的分母相同,能有什么作用?

3、圈分数游戏圈出与1/2相等的分数

4、对对碰与1/2,2/3,3/4生生组组师生互动

五、课堂小结课堂作业

结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,

作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。

《分数的基本性质》教学设计15

一、教学目标:

1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

二、教学重点:

理解掌握分数的基本性质,它是约分,通分的依据

三、教学难点:

理解和掌握分数的基本性质,初步建立数学模型。

四、教学准备:

课件、正方形的纸。

五、教学设计过程:

(一)迁移旧知.提出猜想

1、回忆旧知

猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张 ,谁能猜出另一张是什么?出示: 2÷3

你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:

被除数÷除数=

谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的'性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想:

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

(二)验证猜想,建构新知

A、 看图分类

下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

B、 讨论方法

师:你是怎么判断它们相等的?

师:它们相等,用算式可以怎么表示?

1/2 = 2/4 = 4/8

C、研究规律

师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?

利用研究卡进行研究。

确定的研究对象

分子和分母同时乘上或者

除以一个相同的数

得到的分数

研究对象与得到的分数相等吗?

相等( )不相等( )

猜想是否成立?

成立( )不成立( )

充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13

师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)

师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)

师:分数的基本性质与商不变性质有什么联系?

D、质疑完善

3/4 = 3×( )/ 4×( )

师:括号中可以填哪些数?

预设:可以填无数个数

师:如果只用一个数来表示,填什么数好?

预设:字母

师:这个字母有什么特殊要求吗?(0除外)

得到一个初级的数学模型。3/4= 3×X/ 4×X(X≠0)

让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

(三) 练习升华

1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3

2、把5/6和1/4都化为分母为12而大小不变的分数。

3、把2/3和3/4都化为分子为6而大小不变的分数。

4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

5、 和 哪一个分数大,你能讲出判断的依据吗?

(四)总结延伸

师:这节课学了什么?

师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?

A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板书)

六、作业p87-1、2

板书设计

分数基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)

6÷8

3÷4

12÷16

《《分数的基本性质》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式